442. Dielectric Polarisation of 1-Nitronaphthalene, 9-Nitroanthracene, and 4-Nitrodiphenyl in Various Solvents.

By J. Y. H. CHAU and R. J. W. LE Fèvre.

The magnitudes of the apparent orientation polarisations of the solutes in the title in dioxan, carbon tetrachloride, or benzene are not in the order predicted by earlier empirical equations for solvent effects.

THE dielectric polarisations now reported were observed in connection with the work of the preceding paper. We present them separately because of their bearing on the problem of solvent effects in dipole moment measurements.

Barclay and Le Fèvre¹ and Buckingham and Le Fèvre² tested their equations (connecting the ratios $_{O}P_{soln.}/_{O}P_{gas}$ between the apparent and true orientation polarisations of a dissolved species with shape and solvent properties) with the $_{0}P_{soln}$, figures published by Cleverdon and Smith³ for nitrobenzene in various media. A minor disagreement was noted. In benzene, carbon tetrachloride, and dioxan, the observed orientation polarisations increased from dioxan to benzene, whereas predictions based on equations numbered 1 to 4 by Buckinghan and Le Fèvre ² suggested the reverse, as annexed.

¹ Barclay and Le Fèvre, J., 1950, 556.
² Buckingham and Le Fèvre, J., 1952, 1932.
³ Cleverdon and Smith, Trans. Faraday Soc., 1949, 45, 109.

Ratios $_{\rm O}P_{\rm soin.}/_{\rm O}P_{\rm gas}$ for nitrobenzene.							
Reqd. by equation	1	2	3	4	Expt.		
Dioxan	0.88	0.91	0.90	0.89	0.85		
Carbon tetrachloride	0·86	0.88	0.87	0.89	0·86		
Benzene	0.82	0.87	0.85	0.88	0.87		

It was therefore of interest to ascertain how the orientation polarisations of other nitroaryls are graded in these three solvents. The results are given in Tables 1-3.

Тав	le 1. So	olvent consta	ents at 25°.				
	ε	d_{4}^{25}	p_1 (c.c.)	$C = 3M_1/d_1 (\varepsilon_1 + 2)^2$			
Carbon tetrachloride	$2 \cdot 2270$	1.58454	0.18319	0.10596			
Dioxan	$2 \cdot 2090$	1.0280	0.2794	0.1647			
Benzene	$2 \cdot 2725$	0.87378	0.34086	0.18809			
Toluene	2.3661	0.8622	0.3629	0.1825			
TABLE 2. Dielectric constant and density measurements.							

$10^{5}w_{2}$	£25	d_{4}^{25}	$10^{5}w_{2}$	£25	d_{4}^{25}	$10^5 w_2$	E25	d_{4}^{25}	$10^{5}w_{2}$	8 ₂₅	d
	1-Nitr	onaphth	alene in	dioxan		9-N	litroanth	racene in	carbon	tetrachl	oride
840	$2 \cdot 3029$	1.0295	1173	2.3392	1.0300	75	$2 \cdot 2353$	1.58320	94	$2 \cdot 2379$	1.58286
954	2.3154	1.0296	1174	$2 \cdot 3441$	1.0301	84	$2 \cdot 2367$	1.58306	128	$2 \cdot 2415$	
990	2.3226	1.0299				94	$2 \cdot 2374$	1.58291			
1-Ni	tronapht	halene in	1 carbon	tetrachle	oride		9-Nit:	roanthrac	ene in 1	benzene	
343	2.2901	1.5828	579	2.3325	1.5815	268	$2 \cdot 2890$		481	$2 \cdot 3020$	0.8750
510	2.3205	1.5820	1057	2.4209		275	$2 \cdot 2894$		493	2.3034	0.8751
563	2.3309	1.5819	1844	2.5653		312	$2 \cdot 2915$	0.8746	566	$2 \cdot 3079$	0.8753
						325	2.2920	0.8746	836	$2 \cdot 3251$	0.8761
	1-Nitro	onaphtha	lene in l	benzene		384	2.2959	0.8747			
800	2.3555	0.8763	945	$2 \cdot 3698$	0.8770						
864	2.3628	0.8766	965	2.3705	0.8771	4-Nitrodiphenyl in dioxan					
908	2.3665	0.8768	1140	2.3919	0.8774	270	$2 \cdot 2395$	1.0283	519	$2 \cdot 2665$	1.0286
		• • • • • •				317	$2 \cdot 2441$	1.0284	579	$2 \cdot 2731$	1.0287
1-Nitronaphthalene in toluene				475	2.2612	1.0285	588	$2 \cdot 2740$	1.0288		
555	2.4201	0.8639	1248	2.4904	0.8656						
814	2.4464	0.8644	1390	2.5041	0.8660	4-	Nitrodip	henyl in	carbon	tetrachlo	ride
1058	2.4722	0.8650	1553	2.5210	0.8665	121	_ `	1.58368	204	_	1.58310
		• • • • • •				123	$2 \cdot 2503$		207	$2 \cdot 2654$	_
						136		1.58343	209	$2 \cdot 2657$	
						139	$2 \cdot 2530$		227	2.2702	1.58284
						188	$2 \cdot 2630$		302	$2 \cdot 2838$	1.58216

TABLE 3. Calculations of dipole moments.

190

 $2 \cdot 2635$

303

 $2 \cdot 2853$

Solute	Solvent	de1	β	$_{\infty}P_{2}$ (c.c.)	$R_{\mathbf{D}}$ (c.c.)	μ (D)
1-Nitronaphthalene	Dioxan	11.29	0.172_{5}	362.1	50.1 *	3.90
- ,,	CCl	18· 33 5	-0.315	378.2	,,	4 ·00
,,	Benzene	10.35	0.378	373.9	,,	3 ∙98
,,	Toluene	9.93,	0.319	356·9	,,	3.87
9-Nitroanthracene	CCl	(11.33)	(-1.111)	(354-3)	72.7 *	(3.71)
,,	Benzene	6-18	0.301	312.9	,,	3.43
4-Nitrodiphenyl	Dioxan	11.08	0.117	412·7	58.1 *	4 ·16
,,	CCl4	18.92	-0·477 ₅	4 53·3	,,	4 ·39₅

* Computed from R_D of the parent hydrocarbon by taking R_D values of 1.03 and 6.71 c.c. respectively for H and NO₂ (see Vogel, J., 1948, 1833; Campbell, Le Fèvre, Le Fèvre, and Turner, J., 1938, 404).

1-Nitronaphthalene and 4-nitrodiphenyl have been examined hitherto only in benzene; Wesson ⁴ gives $\mu = 3.62$ or 3.88 D for the former and 4.17 or 4.28 D for the latter. Our figures for 1-nitronaphthalene (3.98 D) in benzene is identical with one reported by Vassiliev and Sirkin.⁵ No previous determinations of the moment of 9-nitroanthracene appear to be recorded; the material is sparingly soluble in carbon tetrachloride and our ⁴ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Institute of Technology, 1948.

⁵ Vassiliev and Sirkin, Acta Physicochim. U.S.S.R., 1941, 14, 414.

results (Table 3, and below) in this medium, being therefore somewhat uncertain, are shown in parentheses.

Littlejohn and Smith ⁶ have published data for 4-nitrodiphenyl in benzene ($_{\infty}P_2 = 447.7$ c.c. at 25°, $\mu = 4.36$ D) which seem concordant with ours in carbon tetrachloride.

The following solvent actions on $\mu_{apparent}$ can accordingly be discerned: for 1-nitronaphthalene and 4-dinitrodiphenyl μ increases in order dioxan < benzene < carbon tetrachloride and for nitrobenzene the order is dioxan < carbon tetrachloride < benzene (for 9-nitroanthracene μ is less in benzene than in carbon tetrachloride). The order for nitrobenzene is contrary to that predicted. Since no information is available for n_2 for the present solutes at 25°, Buckingham and Le Fèvre's equations cannot be applied. As an approximation, however, the shape factors A, B, and C from the previous paper have been applied in the rough form: $\mu_s^2/\mu_g^2 = 1 + (\epsilon_1 - 1)(\exp x^2 - 1)/(\epsilon_1 + 2)$ to compute ratios μ_{s1}^2/μ_{s2}^2 . Predictions for 1-nitronaphthalene, 9-nitroanthracene, or 4-nitrodiphenyl, however, again resemble those for nitrobenzene, viz., the apparent moments should be greatest in dioxan and least in benzene : by experiments the expected order is observed only in carbon tetrachloride and benzene, being less in dioxan than either of the others.

Experimental.—The solutes were recrystallised specimens with m. p.s given in Beilstein's "Handbuch." Experimental procedures and methods of calculation were those described by Le Fèvre; ⁷ the circuit used to determine ε was that noted by Buckingham *et al.*⁸ For symbols used see ref. 7.

The authors thank the Australian Atomic Energy Commission, the Research Committee of the University of Sydney, and Imperial Chemical Industries (Australia and New Zealand) for Scholarships and Grants.

UNIVERSITY OF SYDNEY, NEW SOUTH WALES, AUSTRALIA. [Received, September 24th, 1956.]

⁸ Buckingham, Freeman, Le Fèvre, Narayana Rao, and Tardif, J., 1956, 1405.

⁶ Littlejohn and Smith, J., 1953, 2456. ⁷ Le Fèvre, "Dipole Moments," Methuen, London, 3rd Edn., 1953, Chap. 2.